The Evolution of Light Stress Proteins in Photosynthetic Organisms
نویسندگان
چکیده
The Elip (early light-inducible protein) family in pro- and eukaryotic photosynthetic organisms consists of more than 100 different stress proteins. These proteins accumulate in photosynthetic membranes in response to light stress and have photoprotective functions. At the amino acid level, members of the Elip family are closely related to light-harvesting chlorophyll a/b-binding (Cab) antenna proteins of photosystem I and II, present in higher plants and some algae. Based on their predicted secondary structure, members of the Elip family are divided into three groups: (a) one-helix Hlips (high light-induced proteins), also called Scps (small Cab-like proteins) or Ohps (one-helix proteins); (b) two-helix Seps (stress-enhanced proteins); and (c) three-helix Elips and related proteins. Despite having different physiological functions it is believed that eukaryotic three-helix Cab proteins evolved from the prokaryotic Hlips through a series of duplications and fusions. In this review we analyse the occurrence of Elip family members in various photosynthetic prokaryotic and eukaryotic organisms and discuss their evolutionary relationship with Cab proteins.
منابع مشابه
EFFECTS OF SALT AND IRRADIANCE STRESS ON PHOTOSYNTHETIC PIGMENTS AND PROTEINS IN DUNALIELLA SALINA TEODORESCO
The aim of this study was to examine the effects of salinity and light intensity on the chlorophylls, ?-carotene and protein contents in Dunaliella salina Teod. The algae were grown in inorganic medium containing 0, 0.9, 1.8 (control), 2.6 and 3.5 M NaCl under three illumination regimens [4500 (control), 9000 and 11000 Lux]. The results showed that most electrophoresis protein bands were separa...
متن کاملEvolution of a divinyl chlorophyll-based photosystem in Prochlorococcus.
Acquisition of new photosynthetic pigments has been a crucial process for the evolution of photosynthesis and photosynthetic organisms. In this process, pigment-binding proteins must evolve to fit new pigments. Prochlorococcus is a unique photosynthetic organism that uses divinyl chlorophyll (DVChl) instead of monovinyl chlorophyll. However, cyanobacterial mutants that accumulate DVChl immediat...
متن کاملInstructions for use Title Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus
Acquisition of new photosynthetic pigments has been a crucial process for the evolution of photosynthesis and photosynthetic organisms. In this process, pigment-binding proteins must evolve to fit new pigments. Prochlorococcus is a unique photosynthetic organism that uses divinyl chlorophyll (DVChl) instead of monovinyl chlorophyll (MVChl). However, cyanobacterial mutants that accumulate DVChl ...
متن کاملPhyscomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization.
Light is the source of energy for photosynthetic organisms; when in excess, however, it also drives the formation of reactive oxygen species and, consequently, photoinhibition. Plants and algae have evolved mechanisms to regulate light harvesting efficiency in response to variable light intensity so as to avoid oxidative damage. Nonphotochemical quenching (NPQ) consists of the rapid dissipation...
متن کاملComparative Study on the Effect of Water Stress and Rootstock on Photosynthetic Function in Pistachio (Pistacia vera L.) Trees
The aim of this study is to evaluate the effects of water deficit stress on chlorophyll fluorescence (CF) characteristics of photosystem II (PSII) and pigment contents in two rootstock seedlings (Pistacia atlantica L. and P. khinjuk L.). Three levels of soil water potential (Ψs) was used, including WWD (-0.05 MPa), MWD (-0.7 MPa) and SWD (-1.5 MPa). It was found that water stress increased the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative and Functional Genomics
دوره 3 شماره
صفحات -
تاریخ انتشار 2002